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Abstract

This paper explores the use of genetic algorithms on two different representations of the trav-
elling salesman problem. The influence of different parameter settings, as well as different parent
selection and mutation methods are compared to see what settings suit different algorithm instances
the best. The use of a suitable stopping criterion is also discussed in this paper.

1 Existing genetic algorithm

The performance criterium we opted for is the fitness of the best solution at the end of each run.
The parameter sets we run our tests on our all possible combinations of

population_sizes = [20,50,100,200], mutation_probabilities = [0.1, 0.5, 0.9] and
crossover_probalities = [0.1, 0.5, 0.9], the rest of the variables remained the same as
the initial parameter set, see table 6. We performed our tests on the datasets rondrit016.tsp,
rondrit050.tsp and rondrit127.tsp as those are respectively the smallest, average and biggest
datasets in amount of cities.

We ran each test 30 times as it can be seen in Figure 6 that after 30 runs the average fluctuates
less than 0.1. In this figure the average fitness of 100 runs of one GA have been calculated after
which the average was taken over 5 samples. This allowed for the shades in the graph which display
the deviation of the average stabilized after 30 runs as well.

The test results can be found in the appendix as tables 3, 4 and 5. It is clear that increasing
the population size increases the best fitness of the GA. However the best mutation and crossover
probability vary a bit on the used dataset. For rondrit016.tsp the best results are yielded when
having a mutation rate of 0.5 and a crossover probability of 0.1. For rondrit050.tsp this is also
valid however when the population size is 20 the combination of a mutation rate of 0.9 and a
crossover probability of 0.1 has a slight edge. When using the rondrit127.tsp dataset the best
results are yielded when using a mutation rate of 0.9 and a crossover probability of 0.1.

2 Stopping criterion

The stopping criterion we implemented is one in which we look whether the fitness of the best indi-
vidual keeps improving after a certain amount of generations. We decided that after 50 generations
in which no improvement to the best fitness can be found, the algorithm should be stopped. We
choose this value as you can see in Figure 9 that this stopping criterion would stop our algorithm
at around generation 300 after which only very small improvements are being made to the best
individual. To test the performance we used a test set with the initial parameter set however
allowing up to 1000 generations, see table 7. We compared the speed of the algorithm with our
stopping criterion implemented to the speed of the algorithm without stopping criterion. We ran
both algorithms 30 times to measure the time. The algorithm with stopping criterion finished exe-
cuting after 9.2969s while the algorithm without stopping criterion only finished after 25.7344s.
So we see that the stopping criterion is clearly speeding up the algorithm, in this case by a factor
of 3 approximately. In a second test however we used the initial parameter set again but this time
only allow up to 100 generations. We also ran each algorithm 30 times in this case. This time the
algorithm with stopping criterion stopped after 4.5156s which is ever so slightly slower than the
algorithm without stopping criterion 4.2656s. This is approximately the same as the algorithm
with stopping criterion didn’t have an effect on the execution of the algorithm as there were not
enough generations with an equal fitness for the stopping criterion to be used. The reason the
times still differ a little is because genetic algorithms are stochastic models.
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3 Other representation and appropriate operators (main task)

Alternative representation

For the alternative representation, the path representation was chosen, which naturally shows the
order in which the cities are visited as a list. Note that when the representation changes, the
crossover and mutation operators change as well. Out of the possible crossover operators avail-
able for the path representation, partially mapped crossover (PMX) was chosen. This operator is
relatively simple to implement, as it works as follows:

• Take a random substring between a and b, and swap those sections. This also creates a
mapping that will be used in resolving conflicts later on (if for example x is swapped from
the first parent with y from the second parent, the mapping (x, y) is saved).

• Simply keep all cities before a and after b as is. If any conflict were to occur (for example, x
is already present in the new child between a and b since it was copied from the parent), use
the corresponding mapping to replace it with y.

PMX is easy to implement and requires less computations than for example cycle crossover. For
mutation, simple inversion mutation is used that inverts the subset of cities between two random
positions a and b.

Parameter tuning

For parameter tuning, a non-iterative approach was used on the parameters population size,
mutation probability and crossover probability. The first one could take values over [20, 50, 100, 200],
and the last two probabilites range over [0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95]. Per combination of param-
eter values, the algorithm was run 10 times to measure the following:

• The mean best fitness (MBF) averaged over the ten runs, together with its variance.

• The average number of evaluations to a solution (AES), together with its variance.

This results in four metrics (AES, MBF and their variances) for 245 combinations of parameters
resulting from 2450 runs on the rondrit016.txt dataset, to see their effect on algorithm perfor-
mance, robustness and number of iterations. A third common metric would be success rate, or
how well/if the algorithmic instance approximates the real optimal solution. However, the fitness
function is linearly proportional to the real distance, and the success rate (a constant, the optimal
distance, over the real distance) is inversely and linearly proportional to the distance. Therefore,
the success rate is inversely and linearly proportional to the MBF, and any conclusions made about
the MBF apply to the algorithm’s success rate as well.

Two factor interactions are neglected to see what the individual influences of each parameter
are on the MBF and AES. For each parameter, a simple linear model is included in the figure as
well. In general, one can see in figure 2 that increasing the mutation probability and population
size generally procudes better quality results. For example, setting the population size to 20 gives
varying results, with the worst case being almost twice as bad as the worst case results for a
population size of 200. However, these factors also increase the number of evaluations, and thus
the running time. So when choosing the right combination of parameter settings, a balance has
to be found between the solution quality and running time. Since the running times are fairly
low in these examples, it is not a necessity to keep them as low as possible. For the population
size, a mean value of around a 100 accomodates the tradeoff between running time and solution
quality well. For the mutation probability, a strong increase in number of iterations can be seen in
figure 2. Therefore, setting a lower value of around 0.1 should work faily well. One can see that the
influence of the crossover probability on the solution quality and number of runs is low. Thus setting
it to an arbitrary median value of 0.5 should increase performance without influencing the solution
quality. The settings thus are the following: population size:100, mutation probability:0.1

and crossover probability:0.5, giving the following results:

• A MBF of 504.03, scoring in the 40% best, with σMBF = 28.51.

• An AES of 57.10 iterations, scoring in the 25 % best, with σAES = 9.74.

which gives a good tradeoff between a fast algorithm that delivers fairly good results. And
most importantly, the varainces are relatively low, with other settings usually resulting in a higher
variance and thus giving worse results in some runs despite having a low MBF.
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Population Size Mutation Probability Crossover Probability

Figure 1: Influence of parameters on the mean best fitness (MBF)

Population Size Mutation Probability Crossover Probability

Figure 2: Influence of parameters on the average number of evaluations (AES)

Performance and comparisons

Here, the path and adjacency representation are compared against each other on a slightly larger,
new dataset that has not been used before for parameter tuning, namely rondrit067.txt. The
algorithm instance is set to the same parameter settings to test both representations, as can be seen
in table 1, except for the crossover method used (alternating edges and partially mapped crossover
for adjacency and path representation respectively).

Figure 3 shows that both representations give similar results. However, it is important to note
that number of iterations is not a good indicator to compare absolute running times, since more
computations per iteration in one representation may result in a longer running time, but the
same number of iterations. Therefore, average running times are also considered as a measure
to benchmark both representations. For path representation, an average running time of 1.32s,
whereas for adjacency representation, the result was around 2.74s. This can be explained, among
other things, by the fact that the default implementation of the adjacency representation converts
the chromosomes to a path representation every time for example the inversion mutation is called,
and then converts it back. In general, it can be concluded that path representation works well in
most cases compared to adjacency representation.

4 Local optimisation

We opted to use the 2-opt optimisation heuristic as this allows to explore individuals which would
not be reached using solely partially mapped crossover. The performance criteria we used here is
the best solution at the end of the run of the GA. As parameters we used the same parameter
set and we performed 30 test runs. In figure 9 it can be seen that this local search heuristic has
an average best fitness of 2.965 at the end of each run. This is a better performance than the
algorithm without local search heuristic has. It is also clear that the algorithm with 2-opt converges
very quickly after about 30 generations the GA has pretty much reached an optimal already.
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Parameter Setting

NIND 100

MAXGEN 100

NVAR 26

PRECI 1

ELITIST 0.05

GGAP 1-ELITIST

STOP PERCENTAGE .95

PR CROSS .50

PR MUT .10

LOCALLOOP 0

CROSSOVER alt. edges (adj.) / PMX (path)

Table 1: Parameter settings to compare path vs. adjacency representation.

Figure 3: Path vs. adjacency representation
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Dataset Average shortest path Known shortest path

XQF131 37857 564

BCL380 22650 1621

XQL662 47385 2513

RBX711 57958 3115

BELGIUM 1579.8 -

Table 2: Results of our GA on benchmark problems

Figure 4: SUS compared to roulette wheel selection

5 Benchmark problems

For this we used the parameter settings as in table 7. Unfortunately we could not use our two-opt
implementation for these benchmark problems as it would take too long. To evaluate we ran the
GA 30 times on each benchmark and took the average of the best fitness at the end of each run.
The results are found in table 2. We see that these results are quite bad compared to the optimal
results, most of them are a few times longer than the known optimum. However we do beleive that
if we ran it with two-opt as well the results would greatly improve.

6 Other task(s)

Two alternative parent selection methods were implemented, namely roulette wheel selection and
tournament selection. The former is fairly simplistic and has little to no control over any sort of
parameters, whereas the latter has two parameters that influence the selection pressure: tournament
size k and whether or not replacement after selection is used. In both cases, fitness based selection
is used instead of rank based selection.

Roulette wheel selection

The roulette wheel algorithm is one of the simplest parent selection implementations. However, it
offers little to no control over any parameters. Figure 4 shows a comparison between the stochastic
universal sampling (sus) selection method (implemented by default) and the roulette wheel selection
method. Both samples are averaged over 10 runs, and are plotted together with their variances.
One can see that overall, both methods perform similarly, with their average amount of runs lying
between 40 and 60. However, due to the fact that the user has no control over any parameters of
both selection methods, a third implementation, namely tournament selection, is preferred.
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Figure 5: SUS compared to different settings of tournament selection

Tournament selection

For tournament selection, a deterministic variant is chosen where the individual with the highest
fitness is always selected. With the selection of the fittest member being deterministic, only two
other parameters remain: the tournament size k and whether or not the individuals are being
replaced after selection. Figure 5 shows the influence of changing the tournament size, together
with changing the replacement, plotted against the default SUS for comparison. The figure clearly
shows that increasing k increases the selection pressure, which generally leads to finding local optima
faster. However, the variance (width around the means in every plot) also increases compared to sus.
This can be attributed to the higher selection pressure, that favors exploitation over exploration.
Making replacement possible after an individual is selected (but keeping k at 10) shows that this
increased selection pressure leads to even more drastic results. While in general, a solution is found
in the least amount of iterations, the quality of the solutions varies. This can be seen in the fourth
line having the highest variance around its average solution quality. In conclusion, increasing the
tounament size can be favored over using replacement to solve these kinds of problems.

Time spent on the project

1. For each student of the team: estimate how many hours spent on the project (NOT including
studying textbook and other reading material).

(a) Maxwell: 48h.

(b) Felix: 45h.

2. Briefly discuss how the work was distributed among the team members.

• Different sections were distributed amongst the two team members, with Maxwell work-
ing on section 3 (representation) and 6 (other task), and Felix on section 1 (existing GA),
2 (stopping criterion), 4 (local optimisation) and 5 (benchmark problems). During the
project, sufficient information was exchanged (for example, on how to conduct tests and
generate informational plots) to help each other.

A Appendix
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Figure 6: Average fitness after each run of genetic algorithm with preset parameters for rondrit016.tsp.

Figure 7: Standard deviation of the fitness after each run of genetic algorithm with preset parameters
for rondrit016.tsp.
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Figure 8: Best fitness after each generation of rondrit016.tsp.

Figure 9: Average best fitness after each generation of rondrit016.tsp using 2-opt.
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Dataset Population size Mutation probability Crossover probability Avg best fitness

rondrit016.tsp 20 0.1 0.1 4.4697

rondrit016.tsp 20 0.1 0.5 3.9475

rondrit016.tsp 20 0.1 0.9 3.6674

rondrit016.tsp 20 0.5 0.1 3.4387

rondrit016.tsp 20 0.5 0.5 3.5202

rondrit016.tsp 20 0.5 0.9 3.7271

rondrit016.tsp 20 0.9 0.1 3.5529

rondrit016.tsp 20 0.9 0.5 3.6324

rondrit016.tsp 20 0.9 0.9 3.8755

rondrit016.tsp 50 0.1 0.1 3.629

rondrit016.tsp 50 0.1 0.5 3.4585

rondrit016.tsp 50 0.1 0.9 3.5817

rondrit016.tsp 50 0.5 0.1 3.4102

rondrit016.tsp 50 0.5 0.5 3.4301

rondrit016.tsp 50 0.5 0.9 3.6851

rondrit016.tsp 50 0.9 0.1 3.4318

rondrit016.tsp 50 0.9 0.5 3.499

rondrit016.tsp 50 0.9 0.9 3.7419

rondrit016.tsp 100 0.1 0.1 3.5082

rondrit016.tsp 100 0.1 0.5 3.4189

rondrit016.tsp 100 0.1 0.9 3.4105

rondrit016.tsp 100 0.5 0.1 3.3899

rondrit016.tsp 100 0.5 0.5 3.404

rondrit016.tsp 100 0.5 0.9 3.5387

rondrit016.tsp 100 0.9 0.1 3.3987

rondrit016.tsp 100 0.9 0.5 3.4152

rondrit016.tsp 100 0.9 0.9 3.5908

rondrit016.tsp 200 0.1 0.1 3.4174

rondrit016.tsp 200 0.1 0.5 3.3893

rondrit016.tsp 200 0.1 0.9 3.3929

rondrit016.tsp 200 0.5 0.1 3.3674

rondrit016.tsp 200 0.5 0.5 3.3875

rondrit016.tsp 200 0.5 0.9 3.4459

rondrit016.tsp 200 0.9 0.1 3.3688

rondrit016.tsp 200 0.9 0.5 3.4111

rondrit016.tsp 200 0.9 0.9 3.5109

Table 3: Results of experiments on existing genetic algorithm using rondrit016.tsp.
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Dataset Population size Mutation probability Crossover probability Avg best fitness

rondrit050.tsp 20 0.1 0.1 17.4596

rondrit050.tsp 20 0.1 0.5 13.8954

rondrit050.tsp 20 0.1 0.9 15.8289

rondrit050.tsp 20 0.5 0.1 12.6691

rondrit050.tsp 20 0.5 0.5 13.4892

rondrit050.tsp 20 0.5 0.9 16.3634

rondrit050.tsp 20 0.9 0.1 12.5782

rondrit050.tsp 20 0.9 0.5 13.7061

rondrit050.tsp 20 0.9 0.9 16.266

rondrit050.tsp 50 0.1 0.1 12.9594

rondrit050.tsp 50 0.1 0.5 11.9664

rondrit050.tsp 50 0.1 0.9 15.9328

rondrit050.tsp 50 0.5 0.1 11.1829

rondrit050.tsp 50 0.5 0.5 12.6892

rondrit050.tsp 50 0.5 0.9 15.8262

rondrit050.tsp 50 0.9 0.1 11.4006

rondrit050.tsp 50 0.9 0.5 12.9356

rondrit050.tsp 50 0.9 0.9 15.5243

rondrit050.tsp 100 0.1 0.1 11.6058

rondrit050.tsp 100 0.1 0.5 11.0588

rondrit050.tsp 100 0.1 0.9 14.6467

rondrit050.tsp 100 0.5 0.1 10.3616

rondrit050.tsp 100 0.5 0.5 11.6652

rondrit050.tsp 100 0.5 0.9 14.541

rondrit050.tsp 100 0.9 0.1 10.468

rondrit050.tsp 100 0.9 0.5 11.7728

rondrit050.tsp 100 0.9 0.9 14.7995

rondrit050.tsp 200 0.1 0.1 10.5701

rondrit050.tsp 200 0.1 0.5 10.2619

rondrit050.tsp 200 0.1 0.9 14.0714

rondrit050.tsp 200 0.5 0.1 9.8048

rondrit050.tsp 200 0.5 0.5 10.9036

rondrit050.tsp 200 0.5 0.9 14.0614

rondrit050.tsp 200 0.9 0.1 10.08

rondrit050.tsp 200 0.9 0.5 11.3638

rondrit050.tsp 200 0.9 0.9 14.4532

Table 4: Results of experiments on existing genetic algorithm using rondrit050.tsp.
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Dataset Population size Mutation probability Crossover probability Avg best fitness

rondrit127.tsp 20 0.1 0.1 24.8371

rondrit127.tsp 20 0.1 0.5 21.7449

rondrit127.tsp 20 0.1 0.9 23.8091

rondrit127.tsp 20 0.5 0.1 21.3554

rondrit127.tsp 20 0.5 0.5 21.2436

rondrit127.tsp 20 0.5 0.9 23.6466

rondrit127.tsp 20 0.9 0.1 20.5545

rondrit127.tsp 20 0.9 0.5 21.2561

rondrit127.tsp 20 0.9 0.9 23.7391

rondrit127.tsp 50 0.1 0.1 21.6688

rondrit127.tsp 50 0.1 0.5 20.3521

rondrit127.tsp 50 0.1 0.9 23.8594

rondrit127.tsp 50 0.5 0.1 19.7283

rondrit127.tsp 50 0.5 0.5 20.4358

rondrit127.tsp 50 0.5 0.9 23.5532

rondrit127.tsp 50 0.9 0.1 19.3507

rondrit127.tsp 50 0.9 0.5 20.4588

rondrit127.tsp 50 0.9 0.9 23.3851

rondrit127.tsp 100 0.1 0.1 20.407

rondrit127.tsp 100 0.1 0.5 19.4711

rondrit127.tsp 100 0.1 0.9 22.5058

rondrit127.tsp 100 0.5 0.1 18.7146

rondrit127.tsp 100 0.5 0.5 19.3056

rondrit127.tsp 100 0.5 0.9 22.5534

rondrit127.tsp 100 0.9 0.1 18.5864

rondrit127.tsp 100 0.9 0.5 19.7016

rondrit127.tsp 100 0.9 0.9 22.4282

rondrit127.tsp 200 0.1 0.1 19.4346

rondrit127.tsp 200 0.1 0.5 18.7499

rondrit127.tsp 200 0.1 0.9 22.1479

rondrit127.tsp 200 0.5 0.1 18.0862

rondrit127.tsp 200 0.5 0.5 18.7996

rondrit127.tsp 200 0.5 0.9 22

rondrit127.tsp 200 0.9 0.1 17.8947

rondrit127.tsp 200 0.9 0.5 19.0199

rondrit127.tsp 200 0.9 0.9 21.8703

Table 5: Results of experiments on existing genetic algorithm using rondrit127.tsp.
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Parameter Setting

NIND 50

MAXGEN 100

NVAR 16

PRECI 1

ELITIST 0.05

GGAP 1-ELITIST

STOP PERCENTAGE .95

PR CROSS .95

PR MUT .05

LOCALLOOP 0

CROSSOVER xalt edges

Table 6: Initial parameter set.

Parameter Setting

NIND 50

MAXGEN 1000

NVAR 16

PRECI 1

ELITIST 0.05

GGAP 1-ELITIST

STOP PERCENTAGE .95

PR CROSS .95

PR MUT .05

LOCALLOOP 0

CROSSOVER xalt edges

Table 7: Parameter settings to check the performance of the stopping criterion.
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